
CLOCK SYNCHRONIZATION

Uday Acharya Audumbar Chormale

Overview
Clock synchronization

 The Need of synchronization1.
 Physical Clocks 2.
 Cristian's Algorithm3.
 Berkeley Algorithm4.
 Lamport logical clock5.

Network Time Protocol

 Overview1.
 Architecture2.
 NTP Flow Diagrams3.
 NTP Security Model4.
 NTP Perfomance compared5.

CLOCK SYNCHRONIZATION

Uday Acharya Audumbar Chormale

Overview
Clock synchronization

 The Need of synchronization1.
 Physical Clocks 2.
 Cristian's Algorithm3.
 Berkeley Algorithm4.
 Lamport logical clock5.

Network Time Protocol

 Overview1.
 Architecture2.
 NTP Flow Diagrams3.
 NTP Security Model4.
 NTP Perfomance compared5.

Need Of Synchronization

Since each machine has it's own clock, it's difficult
to time order the events occurred.

Example: make utility

Need Of Synchronization

Distributed database transaction journalling and logging

Stock market buy and sell orders

Aviation traffic control and position reporting

Multimedia synchronization for real-time teleconferencing

Interactive simulation event synchronization and ordering

Distributed network gaming and training

Need Of Synchronization

Since each machine has it's own clock, it's difficult
to time order the events occurred.

Example: make utility

Need Of Synchronization

Distributed database transaction journalling and logging

Stock market buy and sell orders

Aviation traffic control and position reporting

Multimedia synchronization for real-time teleconferencing

Interactive simulation event synchronization and ordering

Distributed network gaming and training

Clock Synchronization

● Physical clocks

● Logical clocks

● Vector clocks

Physical Clocks

Problem: Sometimes we simply need the exact time, not just
an ordering.

Solution: Universal Coordinated Time (UTC):

Based on the number of transitions per second of the
cesium 133 atom (pretty accurate).
 At present, the real time is taken as the average of
some 50 cesium-clocks around the world.
Introduces a leap second from time to time to
compensate that days are getting longer.
UTC is broadcast through short wave radio and satellite.
Satellites can give an accuracy of about ±0.5 ms.

Clock Synchronization

● Physical clocks

● Logical clocks

● Vector clocks

Physical Clocks

Problem: Sometimes we simply need the exact time, not just
an ordering.

Solution: Universal Coordinated Time (UTC):

Based on the number of transitions per second of the
cesium 133 atom (pretty accurate).
 At present, the real time is taken as the average of
some 50 cesium-clocks around the world.
Introduces a leap second from time to time to
compensate that days are getting longer.
UTC is broadcast through short wave radio and satellite.
Satellites can give an accuracy of about ±0.5 ms.

Physical Clocks

Problem: Suppose we have a distributed system with
 a UTC-receiver somewhere in it ⇒ we still have to
 distribute its time to each machine.
Basic principle:

Every machine has a timer that generates an interrupt
H times per second.
 There is a clock in machine p that ticks on each timer
interrupt. Denote the value of that clock by Cp(t),
where t is UTC time.
Ideally, we have that for each machine p, Cp(t) = t, or,
in other words, dC/dt = 1.

Physical Clocks

Never let two clocks in any system differ by more than d
time units ⇒ synchronize at least every d / (2r) seconds.

Physical Clocks

Problem: Suppose we have a distributed system with
 a UTC-receiver somewhere in it ⇒ we still have to
 distribute its time to each machine.
Basic principle:

Every machine has a timer that generates an interrupt
H times per second.
 There is a clock in machine p that ticks on each timer
interrupt. Denote the value of that clock by Cp(t),
where t is UTC time.
Ideally, we have that for each machine p, Cp(t) = t, or,
in other words, dC/dt = 1.

Physical Clocks

Never let two clocks in any system differ by more than d
time units ⇒ synchronize at least every d / (2r) seconds.

Cristian's Algorithm

Assume one machine (the time server) has a WWV receiver
and all other machines are to stay synchronized with it.

Every d/2r seconds, each machine sends a message to the
time server asking for the current time.

Time server responds with message containing current time,
CUTC.

Cristian's Algorithm

● A major problem – the client clock is fast -> arriving value of
CUTC will be smaller than client’s current time, C.
● One needs to gradually slow down client clock by adding less time
per tick.

Cristian's Algorithm

Assume one machine (the time server) has a WWV receiver
and all other machines are to stay synchronized with it.

Every d/2r seconds, each machine sends a message to the
time server asking for the current time.

Time server responds with message containing current time,
CUTC.

Cristian's Algorithm

● A major problem – the client clock is fast -> arriving value of
CUTC will be smaller than client’s current time, C.
● One needs to gradually slow down client clock by adding less time
per tick.

The Berkeley Algorithm

The time daemon asks all the other machines for their clock
values.
The machines answer and the time daemon computes the
average.
The time daemon tells everyone how to adjust their clock.

Lamport’s Logical Clocks
All processes agree on the order in which events occur.

Updating counter Ci for process Pi,

 Before executing an event Pi executes
 Ci ← Ci + 1.

When process Pi sends a message m to Pj, it sets m’s
timestamp ts (m) equal to Ci after having executed the
previous step.

Upon the receipt of a message m, process Pj adjusts its own
local counter as

Cj ← max{Cj , ts (m)}, after which it then executes the first
step and delivers the message to the application.

The Berkeley Algorithm

The time daemon asks all the other machines for their clock
values.
The machines answer and the time daemon computes the
average.
The time daemon tells everyone how to adjust their clock.

Lamport’s Logical Clocks
All processes agree on the order in which events occur.

Updating counter Ci for process Pi,

 Before executing an event Pi executes
 Ci ← Ci + 1.

When process Pi sends a message m to Pj, it sets m’s
timestamp ts (m) equal to Ci after having executed the
previous step.

Upon the receipt of a message m, process Pj adjusts its own
local counter as

Cj ← max{Cj , ts (m)}, after which it then executes the first
step and delivers the message to the application.

Lamport’s Logical Clocks

The "happens-before" relation → can be observed directly in
two situations:
If a and b are events in the same process, and a occurs before b,
then a → b is true.
If a is the event of a message being sent by one process, and b is
the event of the message being received by another process, then
a → b

Lamport’s Logical Clocks

The positioning of Lamport’s logical clocks in distributed
systems.

Lamport’s Logical Clocks

The "happens-before" relation → can be observed directly in
two situations:
If a and b are events in the same process, and a occurs before b,
then a → b is true.
If a is the event of a message being sent by one process, and b is
the event of the message being received by another process, then
a → b

Lamport’s Logical Clocks

The positioning of Lamport’s logical clocks in distributed
systems.

Network Time Protocol

 Overview:

The Network Time Protocol (NTP) is a time
synchronization system for computer clocks
through the Internet network

It was mainly developed at the Delaware
University in the United States.

It is designed particularly to resist the effects
of variable latency (jitter).

NTP uses UDP port 123

Network Time Protocol

 Overview:

The Network Time Protocol (NTP) is a time
synchronization system for computer clocks
through the Internet network

It was mainly developed at the Delaware
University in the United States.

It is designed particularly to resist the effects
of variable latency (jitter).

NTP uses UDP port 123

Main characteristics

 Fully automatic, keeps continuously the
synchronization.
Suitable to synchronize one computer as well
as a whole computer network
Available on almost every type of computer
Fault tolerant and dynamically
autoconfiguring
Carrying UTC time, independent of time
zones and day-light saving time
Synchronization accuracy can reach 1
millisecond.

NTP mechanism:

Stratum 1: Primary server (PS) sync directly with UTC sources.
Stratum 2: Secondary servers (SS) sync directly to PS.
Stratum 3: Lowest servers (LS) execute in user sites sync with
SS.
Accuracy: the number of levers (strata).

Main characteristics

 Fully automatic, keeps continuously the
synchronization.
Suitable to synchronize one computer as well
as a whole computer network
Available on almost every type of computer
Fault tolerant and dynamically
autoconfiguring
Carrying UTC time, independent of time
zones and day-light saving time
Synchronization accuracy can reach 1
millisecond.

NTP mechanism:

Stratum 1: Primary server (PS) sync directly with UTC sources.
Stratum 2: Secondary servers (SS) sync directly to PS.
Stratum 3: Lowest servers (LS) execute in user sites sync with
SS.
Accuracy: the number of levers (strata).

Going away from stratum 1 toward lower stratums, the
synchronization accuracy lowers.

In such a framework, each computer can be at the same time a
server for the computers belonging to the lower stratum and a
client for the computers belonging to the upper stratum.

Each server can have some hundreds of clients, so the number
of computers that can be indirectly synchronized by one primary
server is virtually unlimited.

To make the system more reliable, each client can have more the
one server in the upper stratum.

In this case, the NTP software monitors continuously the
figures of stability and accuracy of all configured servers,
switching dynamically to the server with the best figures.

Multiple servers/peers provide redundancy and diversity.
Clock filters select best from a window of eight time offset
samples.
Intersection and clustering algorithms pick best truechimers
and discard falsetickers.
Combining algorithm computes weighted average of time
offsets.
Loop filter and variable frequency oscillator (VFO) implement
hybrid phase/frequency-lock (P/F) feedback loop to minimize
jitter and wander.

NTP Architecture Overview

Going away from stratum 1 toward lower stratums, the
synchronization accuracy lowers.

In such a framework, each computer can be at the same time a
server for the computers belonging to the lower stratum and a
client for the computers belonging to the upper stratum.

Each server can have some hundreds of clients, so the number
of computers that can be indirectly synchronized by one primary
server is virtually unlimited.

To make the system more reliable, each client can have more the
one server in the upper stratum.

In this case, the NTP software monitors continuously the
figures of stability and accuracy of all configured servers,
switching dynamically to the server with the best figures.

Multiple servers/peers provide redundancy and diversity.
Clock filters select best from a window of eight time offset
samples.
Intersection and clustering algorithms pick best truechimers
and discard falsetickers.
Combining algorithm computes weighted average of time
offsets.
Loop filter and variable frequency oscillator (VFO) implement
hybrid phase/frequency-lock (P/F) feedback loop to minimize
jitter and wander.

NTP Architecture Overview

NTP peer protocol

Packet header includes T1, T2 and T3 timestamps.
Peer state variables org, rec and xmt record the transmit and
receive times of the most recent packet received.
When a packet is transmitted
Copy org to T1 and rec to T2.
Copy the current time to xmt and to T3.
When a packet received
If T3 is the same as xmt, this is a duplicate packet.
If T1 is not the same as org, this is a bogus packet.
Otherwise, copy T3 to pkt and copy the current time to T4
and rec.
Note that the protocol is symmetric and allows time values to
flow both ways simultaneously and is resistant to replays and
drops.
Note the special conditions when either or both peers first
start up.

Timestamp interleaving

In the diagrams, transmit timestamps carry odd numbers,
receive timestamps carry even numbers.
Receive timestamps are available immediately.
In one-step mode, transmit timestamps are conveyed in the
transmitted packet.
In two-step mode, transmit timestamps are conveyed in the
following transmitted packet.
It takes two roundtrips to accumulate all four timestamps

NTP peer protocol

Packet header includes T1, T2 and T3 timestamps.
Peer state variables org, rec and xmt record the transmit and
receive times of the most recent packet received.
When a packet is transmitted
Copy org to T1 and rec to T2.
Copy the current time to xmt and to T3.
When a packet received
If T3 is the same as xmt, this is a duplicate packet.
If T1 is not the same as org, this is a bogus packet.
Otherwise, copy T3 to pkt and copy the current time to T4
and rec.
Note that the protocol is symmetric and allows time values to
flow both ways simultaneously and is resistant to replays and
drops.
Note the special conditions when either or both peers first
start up.

Timestamp interleaving

In the diagrams, transmit timestamps carry odd numbers,
receive timestamps carry even numbers.
Receive timestamps are available immediately.
In one-step mode, transmit timestamps are conveyed in the
transmitted packet.
In two-step mode, transmit timestamps are conveyed in the
following transmitted packet.
It takes two roundtrips to accumulate all four timestamps

 NTP one-step on-wire protocol

 NTP two-step on-wire protocol

 NTP one-step on-wire protocol

 NTP two-step on-wire protocol

 Master-slave protocol

Ethernet NIC hardware strikes a timestamp after the
preamble and before the data separately for transmit and
receive.
In each round master sends Sync message at T1; slave receives
at T2.
In one-step variant T1 is inserted just before the data in the
Sync message; in two-step variant t1 is sent later in a
Follow_Up message.
Slave sends Delay_Req message at T3; master sends
Delay_Resp message with T4. Compute master offset and
roundtrip delay

 NTP protocol header and timestamp formats

 Master-slave protocol

Ethernet NIC hardware strikes a timestamp after the
preamble and before the data separately for transmit and
receive.
In each round master sends Sync message at T1; slave receives
at T2.
In one-step variant T1 is inserted just before the data in the
Sync message; in two-step variant t1 is sent later in a
Follow_Up message.
Slave sends Delay_Req message at T3; master sends
Delay_Resp message with T4. Compute master offset and
roundtrip delay

 NTP protocol header and timestamp formats

Flow Diagrams

1. Main Program
2. Peer Process
3. System Process
4. Clock Discipline Process
5. Clock Adjust Process
6. Poll Process

Control flow

The main program waits for a packet arrival, then control
flows by each of the procedures connected by solid arrows.
A client request requires no persistent association; the server
response is handled directly by fast_xmit.
The packet procedure calls poll_update since it updates the
packet poll variable.
The main program waits for one second, then calls
clock_adjust.
At the poll timeout, control flows by each of the procedures
connected by solid arrows.
The peer_xmit procedure calls clock_filter when the server
has not been heard for three poll intervals. It calls clear on
timeout for ephemeral associaitons.
The dotted arrows show which procdures are called by each
procedure with control returning to the calling procedure.

Flow Diagrams

1. Main Program
2. Peer Process
3. System Process
4. Clock Discipline Process
5. Clock Adjust Process
6. Poll Process

Control flow

The main program waits for a packet arrival, then control
flows by each of the procedures connected by solid arrows.
A client request requires no persistent association; the server
response is handled directly by fast_xmit.
The packet procedure calls poll_update since it updates the
packet poll variable.
The main program waits for one second, then calls
clock_adjust.
At the poll timeout, control flows by each of the procedures
connected by solid arrows.
The peer_xmit procedure calls clock_filter when the server
has not been heard for three poll intervals. It calls clear on
timeout for ephemeral associaitons.
The dotted arrows show which procdures are called by each
procedure with control returning to the calling procedure.

Procedure flow

Main program

Procedure flow

Main program

System process

clock_select procedure
select algorithm: classify available servers as truechimers or
falsetickers.
cluster algorithm: find and discard outlyers until no more
than three survivors remain.
clock_update procedure
call clock_combine procedure to combine weighted server
offsets.
Call local_clock procedure to discipline the system clock.
Update system variables
rootdist function
Return synchronization distance to the primary reference
source.
fit function
Return TRUE if selected server is acceptable and root
distance less than 1s

Clock discipline process

local_clock() function
Discipline system clock using adaptiver-parameter,
phase/frequency-lock loop.
rstclock procedure
Transition to new state and initialize variables.
adjust_freq segment
Adjust oscillator frequency using PLL/FLL feedback loop.
step_freq segment
Step oscillator frequency when first starting and no previous
information.
tc segment
Adjust time constant as a function of prevailing jitter and
oscillator stability.

System process

clock_select procedure
select algorithm: classify available servers as truechimers or
falsetickers.
cluster algorithm: find and discard outlyers until no more
than three survivors remain.
clock_update procedure
call clock_combine procedure to combine weighted server
offsets.
Call local_clock procedure to discipline the system clock.
Update system variables
rootdist function
Return synchronization distance to the primary reference
source.
fit function
Return TRUE if selected server is acceptable and root
distance less than 1s

Clock discipline process

local_clock() function
Discipline system clock using adaptiver-parameter,
phase/frequency-lock loop.
rstclock procedure
Transition to new state and initialize variables.
adjust_freq segment
Adjust oscillator frequency using PLL/FLL feedback loop.
step_freq segment
Step oscillator frequency when first starting and no previous
information.
tc segment
Adjust time constant as a function of prevailing jitter and
oscillator stability.

Clock adjust process: clock_adjust() procedure

clock_adjust() procedure

Called by kernel timer routines once each second.

Adjusts system clock frequency as computed by PLL/FLL.

system process computes initial system clock offset.

Reduce residual clock offset as exponential decay.

This procedure can also be implemented in the kernel for
reduced sawtooth error.

Poll process

poll() procedure

Determine when to transmit a packet according to poll and
burst schedules.

peer_xmit() and fast_xmit() procedures

Format and transmit an NTP packet.

poll update() procedure

Mitigate the poll interval as a function of the host and peer
poll intervals and defined lower and upper limits.

Clock adjust process: clock_adjust() procedure

clock_adjust() procedure

Called by kernel timer routines once each second.

Adjusts system clock frequency as computed by PLL/FLL.

system process computes initial system clock offset.

Reduce residual clock offset as exponential decay.

This procedure can also be implemented in the kernel for
reduced sawtooth error.

Poll process

poll() procedure

Determine when to transmit a packet according to poll and
burst schedules.

peer_xmit() and fast_xmit() procedures

Format and transmit an NTP packet.

poll update() procedure

Mitigate the poll interval as a function of the host and peer
poll intervals and defined lower and upper limits.

NTP secure group principles

A NTP secure group is a subnet using a common security
model, authentication protocol and identity scheme based on
symmetric key or public key cryptography.
Each group host has

For public key cryptography, a public/private host key pair
and self-signed host certificate.
Optional password-encrypted identity parameters.

Each group has one or more trusted hosts that
Provide cryptographic redundancy and diversity.
Operate at the lowest stratum of the group.
For public key cryptography, the host certificate must
have a trusted extension field.

A trusted agent acting for the group generates the identity
parameters, which are distributed to other group hosts by
secure means..

NTP security model

NTP operates in a mixed, multi-level security environment
including symmetric key cryptography, public key
cryptography and unsecured.
NTP timestamps and related data are considered public values
and never encrypted.
Time synchronization is maintained on a master-slave basis
where synchronization flows from trusted servers to
dependent clients possibly via intermediate servers operating
at successively higher stratum levels.
A client is authentic if it can reliably verify the credentials of
at least one server and that server messages have not been
modified in transit.
A client is proventic if by induction each server on at least one
path to a trusted server is authentic.

NTP secure group principles

A NTP secure group is a subnet using a common security
model, authentication protocol and identity scheme based on
symmetric key or public key cryptography.
Each group host has

For public key cryptography, a public/private host key pair
and self-signed host certificate.
Optional password-encrypted identity parameters.

Each group has one or more trusted hosts that
Provide cryptographic redundancy and diversity.
Operate at the lowest stratum of the group.
For public key cryptography, the host certificate must
have a trusted extension field.

A trusted agent acting for the group generates the identity
parameters, which are distributed to other group hosts by
secure means..

NTP security model

NTP operates in a mixed, multi-level security environment
including symmetric key cryptography, public key
cryptography and unsecured.
NTP timestamps and related data are considered public values
and never encrypted.
Time synchronization is maintained on a master-slave basis
where synchronization flows from trusted servers to
dependent clients possibly via intermediate servers operating
at successively higher stratum levels.
A client is authentic if it can reliably verify the credentials of
at least one server and that server messages have not been
modified in transit.
A client is proventic if by induction each server on at least one
path to a trusted server is authentic.

 NTP performance compared

Typical performance of stratum-2 servers synchronized to
remote primary servers

Performance of typical NTP servers in the global Internet

Table shows number days surveyed, mean absolute offsets
(ms), RMS and maximum absolute error (ms) and number of
days on which the maximum error exceeded 1, 5, 10 and 50 ms
at least once
Servers represent LANs, domestic WANs and worldwide
Internet
Results show all causes, including software upgrades and
reboots

 NTP performance compared

Typical performance of stratum-2 servers synchronized to
remote primary servers

Performance of typical NTP servers in the global Internet

Table shows number days surveyed, mean absolute offsets
(ms), RMS and maximum absolute error (ms) and number of
days on which the maximum error exceeded 1, 5, 10 and 50 ms
at least once
Servers represent LANs, domestic WANs and worldwide
Internet
Results show all causes, including software upgrades and
reboots

Present Status

A major milestone has been passed with new support for the
IPv6 addressing family in addition to the original IPv4
addressing family.

Manycast mode support has been refined and tested in a
production environment

Autokey public key cryptography support has been completed

References:
Continuous clock amortization need not affect the precision of a
clock synchronization algorithm, August 1990- Frank
Schmuck,Flaviu Cristian

Fault-tolerant clock synchronization in distributed systems-

 Ramanathan, P.; Shin, K.G.; Butler, R.W.

Clock Synchronization in a Local Area Network, R. Gusella and S.
Zatti, University of California, Berkeley

Byzantine Clock Synchronization - Leslie Lamport,P. M. Melliar-Smith

http://www.ntp.org/

http://toi.iriti.cnr.it/uk/ntp.html

http://www.eecis.udel.edu/~mills/ntp.html

Present Status

A major milestone has been passed with new support for the
IPv6 addressing family in addition to the original IPv4
addressing family.

Manycast mode support has been refined and tested in a
production environment

Autokey public key cryptography support has been completed

References:
Continuous clock amortization need not affect the precision of a
clock synchronization algorithm, August 1990- Frank
Schmuck,Flaviu Cristian

Fault-tolerant clock synchronization in distributed systems-

 Ramanathan, P.; Shin, K.G.; Butler, R.W.

Clock Synchronization in a Local Area Network, R. Gusella and S.
Zatti, University of California, Berkeley

Byzantine Clock Synchronization - Leslie Lamport,P. M. Melliar-Smith

http://www.ntp.org/

http://toi.iriti.cnr.it/uk/ntp.html

http://www.eecis.udel.edu/~mills/ntp.html

